

LA-UR-21-20123

Approved for public release; distribution is unlimited.

Title: Module 6 Flattop-Free Run Demonstration

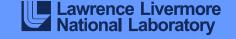
Author(s): Sanchez, Rene Gerardo

Intended for: This presentation will be used as part of handout of modules that

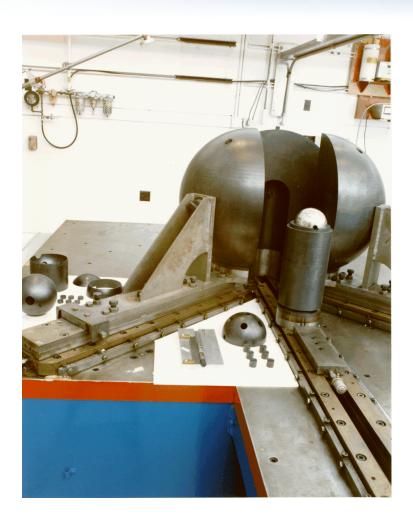
students get when they take the Nuclear Criticality Safety training

given in Nevada

Issued: 2021-01-07

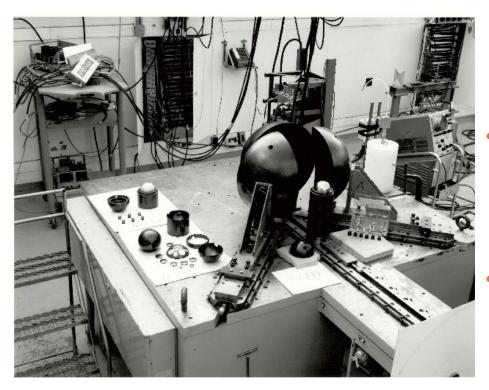

Module 6 Flattop Free-Run Demonstration

LA-UR-21 Unclassified


Goals

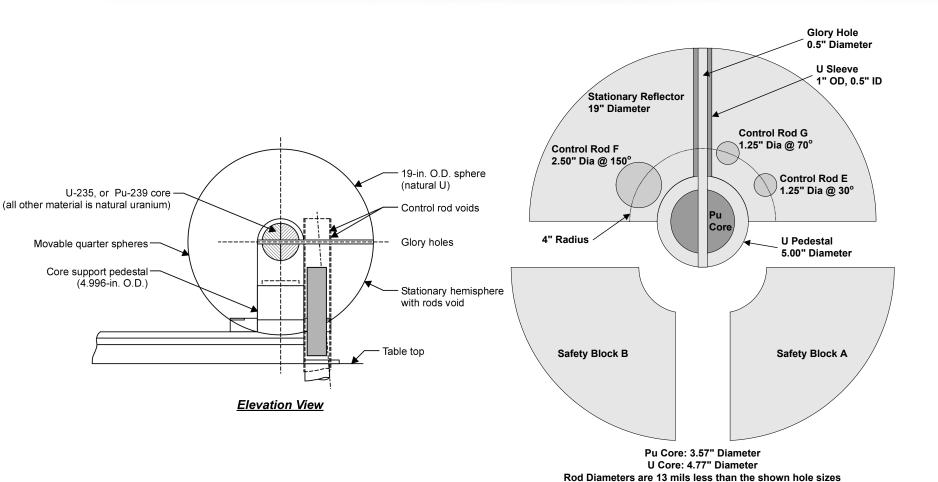
- To ensure students gain a working knowledge of the design of the Flattop critical assembly.
- To ensure students gain a working knowledge of how changes in reflector geometry can affect the criticality of a system.
- To ensure students gain a working knowledge of how to use the Inhour equation and associated parameters to infer the reactivity addition during a transient excursion.

 To ensure the students gain a working knowledge of the concept of temperature-dependent reactivity feedback as it applies to the transient behavior of a critical assembly during a nuclear excursion.


Flattop Assembly General Description

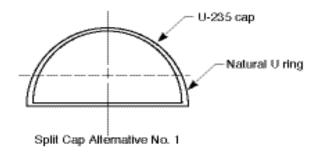
- Simple one-dimensional spherical geometry benchmark assembly.
- Used originally for critical mass studies for thick uranium reflected systems in spherical geometry.
- 1000-kg natural uranium reflector (0.7 wt % ²³⁵U, 19.0 g/cm³)
 - 500-kg hemisphere.
 - Two 250-kg quarter-sphere safety blocks.
 - Reconfigurable pedestal to accommodate different cores.
- Can operate in "free-run" mode up to several kilowatts
 - Temperature increases of up to 300°C

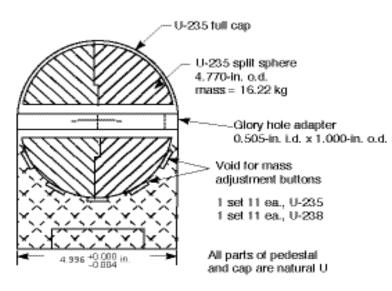
Flattop Assembly General Description

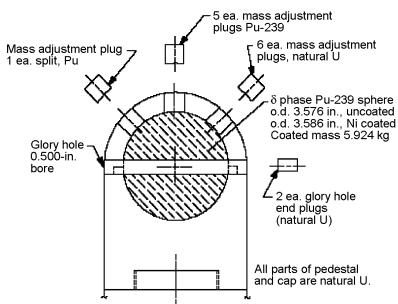


Flattop in Kiva II at Pajarito Site in Los Alamos, circa 1964.

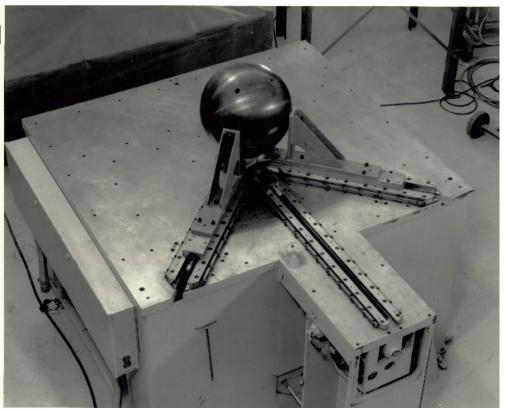
- Currently, two basic cores are available for use with assembly:
 - uranium (93.24 wt % ²³⁵U metal core).
 - plutonium (4.8 wt % ²⁴⁰Pu) delta-phase metal core clad in nickel.
- Other core configurations used in past studies include
 - a ²³³U metal core and
 - composite plutonium/uranium metal cores.
- Current applications include
 - sample reactivity worth studies,
 - reactor dynamic excursion studies,
 - sample neutron activation studies,
 - dosimetry measurements,
 - critical assembly operator training, and
 - criticality safety training demonstrations.




Flattop Core Design



Flattop Core Design



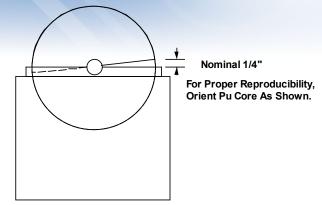
Uranium Core Material Description

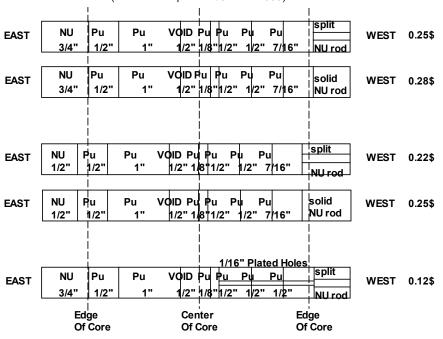
- The highly enriched uranium (HEU) metal core is composed of
 - 93.24 wt % 235 U,
 - 5.74 wt % ²³⁸U, and
 - 1.02 wt % ²³⁴U.
- The core uranium density is 18.62 g/cm³.

Flattop Critical Assembly, circa 1958.

Plutonium Core Material Description

- The Flattop plutonium core consists of two hemispheres of deltaphase plutonium (4.8 wt % ²⁴⁰Pu) metal alloy clad in nickel (avg. 0.005-in.thick nickel clad).
- The core density is 15.53 g/cm³.
- The total plutonium mass in the two halves is just under 6 kg.




Flattop Core Design

Orientation of plutonium hemispheres for reproducibility.

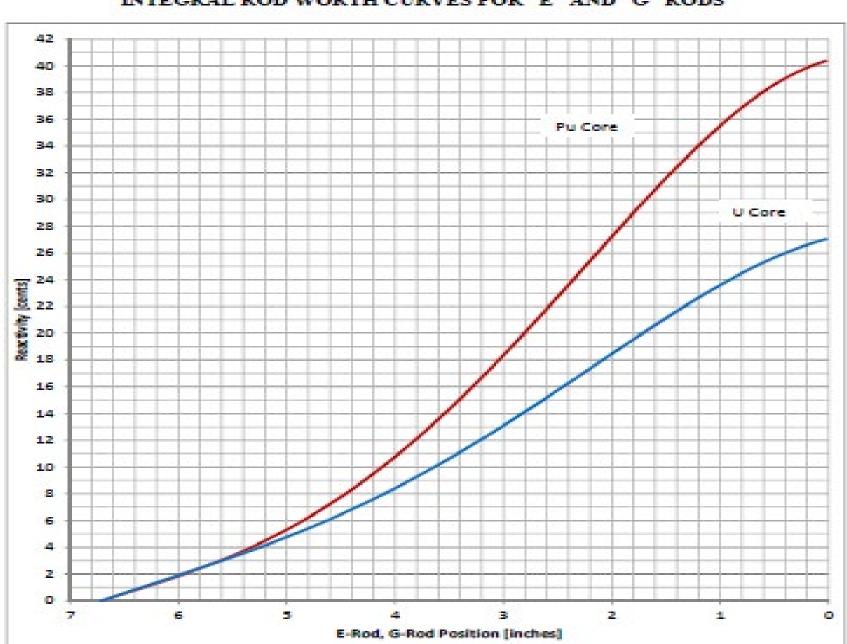
Examples of glory hole loadings and their excess reactivities when using the plutonium core.

Nominal Reactivities for Pu Core/ 6 NU Buttons In Cap/ Glory Hole as Follows:
(Measured September/October 1999)

Flattop Control System

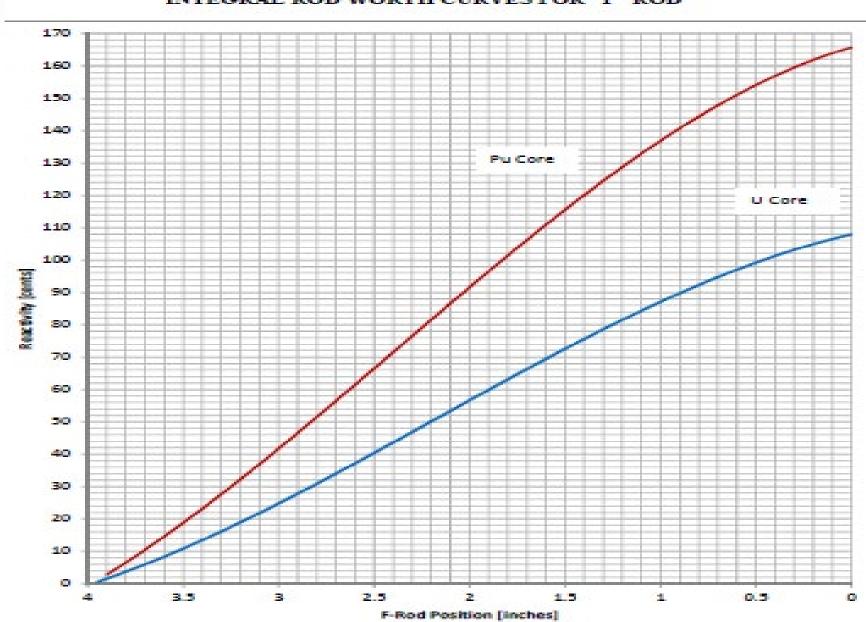
Interlocks

- A Block must be on in limit before B Block can be inserted.
- A Block and B Block must be on in limits before control rods E, F, or G can be inserted.
- All elements must be on out limit before reset is allowed.

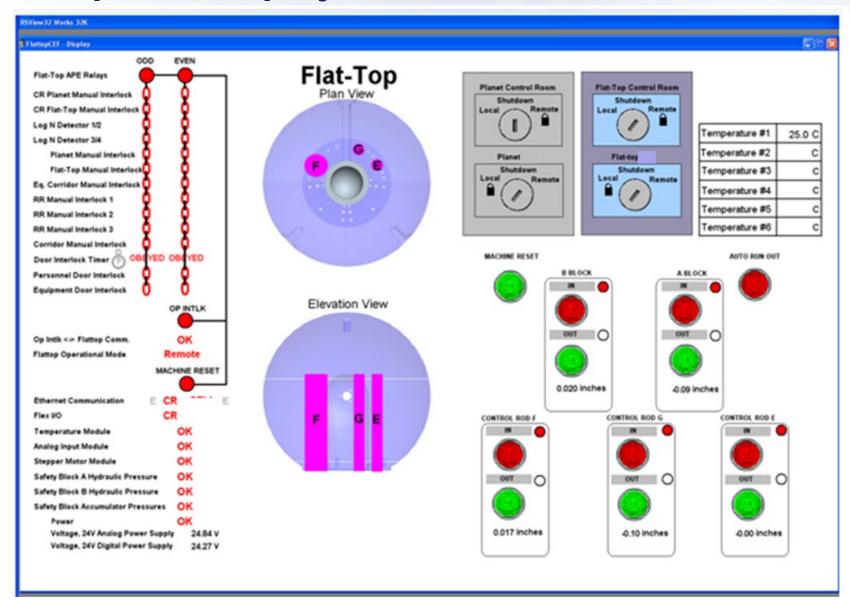

Dead-Man Feature

- Releasing a control element will stop the motion of the control element (except for A Block).
- If A Block is not on the in limit, it will automatically retract to the out limit.

Flattop Control Rod Worths


INTEGRAL ROD WORTH CURVES FOR "E" AND "G" RODS

Flattop Control Rod Worths



INTEGRAL ROD WORTH CURVES FOR "F" ROD

Flattop HMI Display

Flattop Local Control

- Local operation of Flattop is allowed, provided that
 - "...for any condition where a safety block must be moved with personnel in the room, with a core installed (e.g., alignment), power to the other safety block will be locked out";
 - local power lockouts are installed for each safety block actuator (similar to Godiva IV); and
 - the operators select "Move A Block" or "Move B Block" via the Local Control System as appropriate.

Inhour Equation for Flat-Top (Uranium)

$$\rho(\$) = \frac{l}{\beta_{eff} * T} + \sum_{i=1}^{12} \frac{\beta_i / \beta_{eff}}{1 + \lambda_i T}$$

 $eta_{\it eff}/l$ is the Rossi-lpha at delayed critical. T

is the reactor period.

 β_i / β_{eff} is the weighed relative abundance for ²³⁵U for each of the six groups from fast fission and the weighed relative abundance for ²³⁸U for each of the six groups from fast fission.

is the decay constant for ²³⁵U for each of the six groups and the decay constant for ²³⁸U for each of the six groups from fast fission.

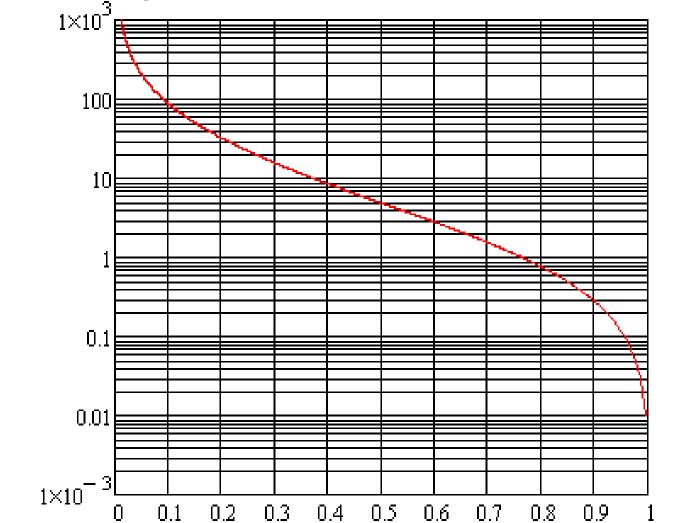
Parameters Needed for the Inhour Equation

For the Flattop (Uranium)

$$\alpha(DC) = \beta/l = 3.8 \times 10^5 \text{ s}^{-1}$$

82% of fissions occurred in ²³⁵U and 18% in ²³⁸U.

Decay Constants and Yields for ²³⁵U and ²³⁸U from Fast Fission.


Group Index, i	Decay Constant	Relative Abundance	Weighed Relative Abundance	Decay Constant	Relative Abundance	Weighed Relative Abundance
		²³⁵ U			238⋃	
1	0.0127	0.038	0.0313	0.0132	0.013	0.002
2	0.0317	0.213	0.175	0.0321	0.137	0.024
3	0.115	0.188	0.155	0.139	0.162	0.028
4	0.311	0.407	0.335	0.358	0.388	0.068
5	1.40	0.128	0.105	1.41	0.225	0.039
6	3.87	0.026	0.021	4.02	0.075	0.013

Graphical Representation of the Inhour Equation for Flattop with the Uranium Core

Reactor Period

(Seconds)

Reactivity (\$)

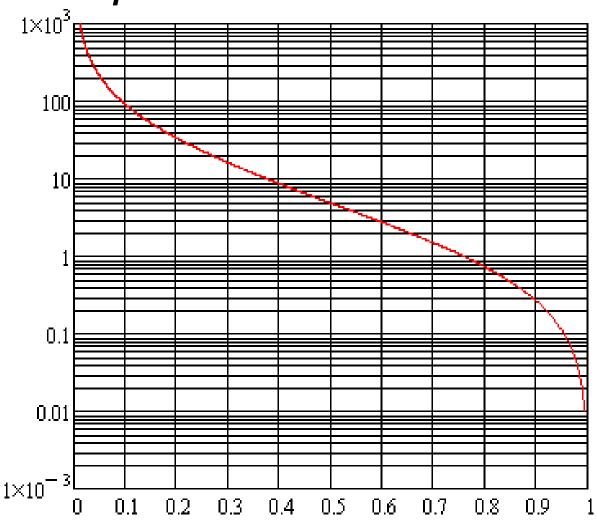
Parameters Needed for the Inhour Equation

For the Flattop (Plutonium)

66% of fissions occurred in ²³⁹Pu and 34% in ²³⁸U.

$$\alpha(DC) = \beta/1 = 2.28 \text{ x } 10^5 \text{ s}^{-1}$$

Decay Constants and Yields for ²³⁹Pu and ²³⁸U from Fast Fission


Group Index, i	Decay Constant	Relative Abundance	Weighed Relative Abundance	Decay Constant	Relative Abundance	Weighed Relative Abundance
		²³⁹ Pu			238U	
1	0.0129	0.038	0.025	0.0132	0.013	0.005
2	0.0311	0.280	0.183	0.0321	0.137	0.047
3	0.134	0.216	0.155	0.139	0.162	0.056
4	0.331	0.328	0.215	0.358	0.388	0.134
5	1.26	0.103	0.067	1.41	0.225	0.078
6	3.21	0.035	0.023	4.02	0.075	0.026

Graphical Representation of the Inhour Equation for Flattop with the Plutonium Core

Reactor Period

(Seconds)

Reactivity (\$)

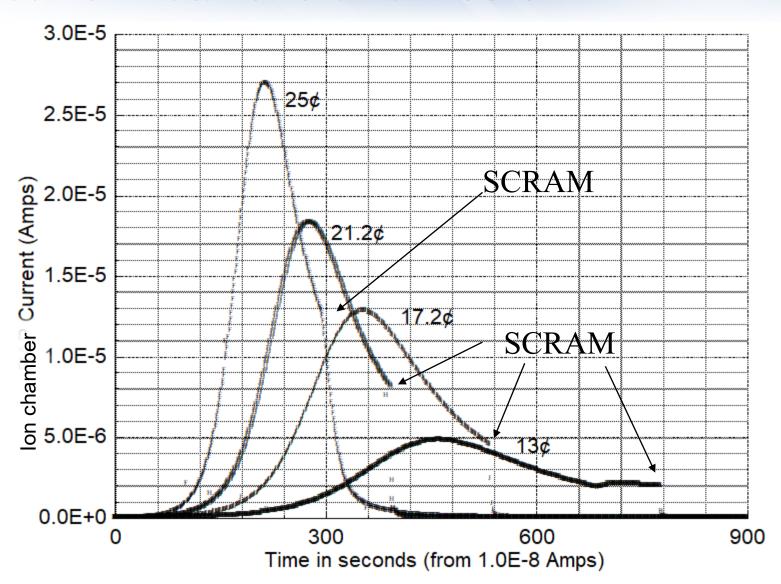
Temperature Coefficient of Reactivity

$$\frac{\Delta \rho}{\Delta T} (\phi / {}^{\circ}C)$$

Negative – temperature reactivity quench Positive – autocatalytic or divergent reaction

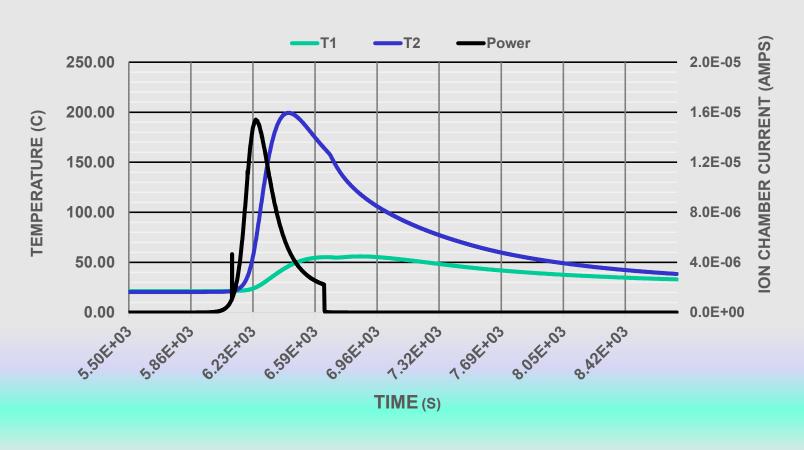
Assembly	Approx. Temp. Coeff.		
Godiva IV, Big Ten, Flattop U	-0.3 (¢/°C)		
Flattop delta-phase plutonium	-0.2(¢/°C)		
SHEBA U(5) solution	-4.0 to -10.0 (¢/°C)		
CNPS(U(20)O ₂ -C matrix	-1.2 (¢/°C)		

Contributions from expansion, Doppler shifts, geometry changes



Basic Free-Run Operations Methodology

- Pre-op for remote operation
 - Verify configuration
- Verify excess reactivity
 - Establish DC
 - Insert all rods, measure excess reactivity
- Establish DC
- Insert free-run increment
- Withdraw B Block ~0.5 in.
 - Delayed neutron decay
- Insert B Block


Free-Run Data for Uranium Core

Free-Run Temperatures and Power

Free Run Temperature and Power \$0.25 Free Run May 10, 2017

References

- R. R. Paternoster et al., "Safety Analysis Report for the Los Alamos Critical Experiments Facility (LACEF) and the Hillside Vault (PL-26)," Los Alamos National Laboratory report LA-CP-92-235, Rev. 4, (1998).
- 2. R. Brewer and T. McLaughlin, "Uranium-235 Sphere Reflected by Normal Uranium Using FlatTop," International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(95)03/II, HEU-MET-FAST-028.
- 3. R. Brewer, T. McLaughlin, "Plutonium Sphere Reflected by Normal Uranium Using FlatTop," International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(95)03/I, PU-MET-FAST-006.
- 4. R. Brewer and D. K. Parson, "Benchmark Critical Experiment of a Uranium-233 Sphere Reflected by Normal Uranium with FlatTop," International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(95)03/V, U233-MET-FAST-006.

References (continued)

- 5. D. M. Barton, W. Bernard, and G. E. Hansen, "Critical Masses of Composites of OY and Pu-239-240 in Flattop," Los Alamos National Laboratory report LAMS-2489 (1961).
- 6. G. R. Keepin, *Physics of Nuclear Kinetics*, Addison-Wesley Publishing Company, Inc., Reading MA (1965).